
function sliderDemo()
{
 var myDiag=new Dialog();
 var mySlider=new Slider();

 myDiag.add(mySlider);

 mySlider.label="Example Slider"
 // set min, max and current value
 mySlider.min=-10;
 mySlider.max= 10;
 mySlider.value=3;
 // enable ticks
 mySlider.tickPosition=1;
 mySlider.tickIntervall=2;

 // add NumberEdit to dialog to
 // display current value of slider
 var myNumberEdit=new NumberEdit();
 myNumberEdit.label="Slider Value";
 myNumberEdit.value=mySlider.value;
 myDiag.add(myNumberEdit);

 // connect the sliderChanged
 // signal with the NumberEdit
 connect(mySlider , "valueChanged()",
 mySliderFunction);

 // show dialog with slider
 myDiag.exec()

 // the function that gets called
 // each time the slider is changed
 function mySliderFunction()
 {
 myNumberEdit.value=mySlider.value;
 }
}

SIMPACK News | November 2009 | 27

Wolfgang Trautenberg, SIMPACK AG | SOFTWARE

SIMPACK's JavaScript based scripting
is a powerful tool for adapting and
expanding the SIMPACK PostProcessor
as well as for automation of simulation
workflows. Besides the base capabilities
of JavaScript, SIMPACK scripting
offers powerful features such as
a framework for gen-
erating custom GUI
dialogs, for accessing
files and directories,
and for launching and
controlling processes.
Another valuable but less well known
feature of SIMPACK scripting is its
capability to reuse existing script code.
This is particularly useful if a set of
scripts or script functions exist that
are being re-used in different scripting
projects. This feature allows the sharing
of scripts between different users
throughout a company. This is ideal for
situations where one user creates and
maintains a set of scripts that should
be used but not changed by other users.
The Script.include() method serves
for re-using scripts.

TWO WAYS TO INCLUDE SCRIPTS
Script code can be loaded into a script either
from an external script file or as a string.

INCLUDING SCRIPTS FROM FILES
Loading scripts from a file is done by using
the Script.include() method where a
filename is given as a parameter. The scripting
engine then searches for the respective script
file in the script search path. Once the file is
found, it is loaded and the definitions and
functions in that script file can be accessed
as with any other script code. The scripts are
searched for in a set of search paths.
These paths can be set and manipulated with
the scripting methods: addSearchDir(),
insertSearchDir(), removeSearchDir()
and ResetSearchPath().
The default search path points to the
directories $SIMPACK/run/scripts and
$SIMPACK_MODEL/dat/scripts.
The following statement shows how to
include the script file "myFile.qs" from the
script search path:

For more 'SIMPACK — Tips and Tricks' please see our website under:
www.simpack.com/simpack_news_by_industrialsector.html

Fig. 1: Slider widget and NumberEdit
connected via valueChanged signal

SIMPACK — Tips and Tricks
SIMPACK Scripting: Re-using
Scripts, New Widgets and Signals

Script.include("myFile.qs");
After this state-ment, all methods and
functions defined in "myFile.qs" can be
accessed. Please note that any global script
code, i.e. code that is not part of a method
or function, is executed immediately once
the script is included.

INCLUDING SCRIPTS
FROM A STRING
Loading script code
from a string is
particularly useful if

you want to create script code on the fly
that needs to be executed by the script
currently running. The following shows how
to include script code from a string:

Script.include("function myName()
 {print("Hello SIMPACK");}",
 "myContext", true);

Once this command is executed, a new
function myName() is known to the scripting
engine and can be called from scripts by
executing myName().

New widgets (GUI elements) and signals
have arrived in the SIMPACK Scripting
engine. These serve for creating more
powerful dialogs.

NEW WIDGET SLIDER FOR ENTERING
AND CHANGING VALUES
With SIMPACK 8902 a new GUI widget has
arrived in the scripting engine, the Slider.
The Slider is ideally suited for letting the user
dynamically change a number value and
immediately see the results (see Fig. 1).

SIGNALS ADD IMMEDIATE CONTROL
Not only was the slider added but also new
Signals were made available. Signals are sent
out by the scripting engine when certain
events occur in a scripted GUI. An example
for such an event would be the dragging

“...SIMPACK scripting offers
powerful features such as

a framework for generating
custom GUI dialogs...”

of a slider to a new position. To make the
scripted GUIs more dynamic, Signals were
added to the Slider widget, the LineEdit and
the NumberEdit. With these new Signals,
it is now possible to find out about and
immediately react to input of the user on
any of these widgets. In this way, highly
dynamic GUIs can be created. Previously
such signals were only available for the
PushButton widget.
Please see the SIMPACK Scripting
documentation for details and examples
about these functionalities.

