SIMPACK Engine

Content:

- Application Overview
- New SIMPACK Engine Modelling Elements
- SIMPACK Engine Database
- Product Outline
- Conclusion
SIMPACK Engine: Application Overview

Valve Train

Timing Mechanisms
Accessory Drive

Crank Train

'Upper' Engine Dynamics

'Lower' Engine Dynamics

SIMPACK User Meeting 04, SIMPACK Engine, 9th Nov. 2004, Marcus Schittenhelm
SIMPACK Engine: Application Overview

Analysis:

Valve Train
- valve longitudinal and lateral dynamics
- valve spring force/stress/durability
- contact forces
- camshaft torsional/bending behaviour
- camshaft bearing design
- ...

Timing Mechanisms
- chain dynamics (forces, vibrations, noise)
- belt dynamics (forces, vibrations, noise)
- gear dynamics (forces, displacements, …)
- timing mechanism torsional oscillations
- crankshaft/camshaft bending influence
- ...

Crank Train
- camshaft torsional/bending behaviour
- camshaft bearing design
- connecting rod bearing design
- flywheel design
- …
Analysis:

There are interactions between timing mechanism, ‘upper’ and ‘lower’ engine dynamics:

>> Complete System Behaviour!
Overview:

- Rigid Body Contact Elements
- Flexible Body Contact Elements
- Hydraulic Lash Adjuster
- Dynamic Valve Spring
- Hydrodynamic Bearings
- Combustion Gas Forces
- Gearwheel
- Chain
- New Time Excitations
- Order Analysis
Rigid Body Contact Elements:

- Contact Surface Description
 - *.su2 files
 - carthesian coordinates
 - **cylinder coordinates**
 - **advanced surface 2D plot**

- Moved Markers
 - 2D moved marker
 - 3D moved marker
 - 2D multi point contact

- Contact Force Law
 - constraint
 - single sided spring damper
 - **Hertzian contact**
 - Friction
Flexible Body Contact Elements:

- Elastic Moved Marker
 2D curve on 2D curve

- Elastic Moved Marker
 2D Curve on 3D Surface

- Direct (!) contact on flexible bodies

> no contact surface stiffening
 (as is common with former MBS methods)
Hydraulic Lash Adjuster:

- Detailed model based on
 - oil properties
 - geometric dimensions
 - spring parameters
 - check ball dynamics

- Equivalent model
 - without check ball dynamics
 - optimised calculation speed

- Can be used as
 - valve clearance adjuster (moved and fixed)
 - hydraulic chain tensioner
Dynamic Valve Spring:

- Two levels of model detail
 - 1D Multi Mass model
 - 3D flexible model (SIMBEAM based)

- Automated model generation process, based on physical and geometrical spring parameters:
Dynamic Valve Spring:

- Arbitrary user defined winding shapes

cylinder | **cone** | **beehive** | **barrel** | **...**
Dynamic Valve Spring:

- Arbitrary user defined winding shapes

- Cylinder
- Cone
- Beehive
- Barrel
Dynamic Valve Spring:

- Various types of cross section shapes. e.g.:

 - **cylinder:**

 ![Cylinder Diagram](image)

 - **poly arc:**

 ![Poly Arc Diagram](image)

 - **ellipse:**

 ![Ellipse Diagram](image)

 - **rectangle:**

 ![Rectangle Diagram](image)
Dynamic Valve Spring: 1D Multi Mass

- Arbitrary body/winding discretisation
- Arbitrary winding contact discretisation
- Can be use as standalone model (e.g. for determining force-displacement and frequency-displacement characteristics)
- Can be used as an interchangeable substructure within a main model

> Optimum calculation performance due to SIMPACK’s minimal equations of motion
Dynamic Valve Spring: 3D SIMBEAM

- Arbitrary beam/winding discretisation
- Arbitrary winding contact discretisation
- Can be use as standalone model (e.g. for determining force-displacement and frequency-displacement characteristics)
- Can be used as an interchangeable substructure within a main model

> Optimum level of accuracy combined with reasonable calculation speed
Hydrodynamic Bearings in SIMPACK by IST:

- Based on TOWER-MBS Software from IST in Aachen (theory of Prof. Knoll)

- Two levels of detail available in SMPACK at the moment:
 - Impedance method (look up table, fast)
 - Online FEM method (quasi static EHD)
 - Offline EHD (TOWER)

- Applicable with radial and axial hydrodynamic bearings, e.g.
 - crankshaft bearings
 - camshaft bearings
 - connecting rod bearings
 - valve guidance
 - ...

- Possible future development for SIMPACK:
 - ‘True’ Online EHD
Hydrodynamic Bearings in SIMPACK by IST:

<table>
<thead>
<tr>
<th>Impedanz Methode (Kennfeldlösung)</th>
<th>verfügbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Interpolation in Kennfeldern (sehr schnell)</td>
<td></td>
</tr>
<tr>
<td>- Eingeschränkte Modellbildung</td>
<td></td>
</tr>
<tr>
<td>(Nur Zylindrisch, keine Kippung, Nuten, ...)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Online FEM-Methode</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Lösung der Reynoldsgleichung in jedem Zeitschritt</td>
<td></td>
</tr>
<tr>
<td>- Beliebige Schalengeometrie (Ölnuten, Taschen, etc.)</td>
<td></td>
</tr>
<tr>
<td>- Variabler Spalt in Axialrichtung (Kippung)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offline-EHD (TOWER)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Zapfenschiefstellung und Kraft über der Zeit (MKS)</td>
<td></td>
</tr>
<tr>
<td>- nachgeschaltete EHD-Analyse (rückwirkungsfrei)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Online-EHD</th>
<th>geplant</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Kompakte Einzelkörper (z.B. Pleuel)</td>
<td></td>
</tr>
<tr>
<td>- Hauptachsenreduktion für Bohrung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Online-EHD mit Substrukturtechnik</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Komplexer Motorverbund mit n Lagern</td>
<td></td>
</tr>
<tr>
<td>- Substrukturen mit Hauptachsenreduktion</td>
<td></td>
</tr>
<tr>
<td>- Interfacemoden mit SVD (Randmoden)</td>
<td></td>
</tr>
<tr>
<td>- hohe lokale Genauigkeit in jeder Lagerbohrung</td>
<td></td>
</tr>
</tbody>
</table>
Hydrodynamic Bearings by IST:
Radial Bearings

- Arbitrary bearing profiles:
 - segmentations
 - oil inlets
 - lateral offsets
 - lemon bore
 - ...
Hydrodynamic Bearings by IST:
Axial Bearings

- Detailed modelling of valve guide
- Online FEM method necessary
Combustion Gas Forces:

- piston forces due to gas pressure array
- arbitrary engine types
- static and dynamic array shifts

Applications:

> crankshaft bearing design (loads)
> engine torsional excitations
SIMPACK Gearwheel:

- Involute spur and helical gears
- Internal and external gears
- Backlash and friction
- Single and multi-point contact
- Variable separation distance of gear wheels
- Addendum and dedendum modification
- Force element parameterisation via SIMPACK 3D gearwheel primitive
- Contact force visualisation
SIMPACK Engine: Single Modelling Components

SIMPACK Chain*:

Components:
- roller + bush chain
- sprocket wheels (ISO 606)
- guides

Dynamic effects:
- polygonal effects
- torsional impact (during running-in and -out)
- drive and brake moments
- elongation
- centrifugal force
- clearance
- ...

*) available as SIMPACK pre release on request
SIMPACK Chain*:

Modelling Capabilities:

- elastic chain-sprocket contact
- elastic chain-guide contact
- elastic link joint contact
- coulomb or viscous friction
- clearance
- easy to use automatic chain trajectory setup
- detailed hydraulic chain tensioner
- ...

*) available as SIMPACK pre release on request

Pictures according to:
SIMPACK Chain*:

SIMPACK highlights:
- Optimised ‘macro‘ chain force element
- SIMPACK’s renowned relative coordinate algorithm, optimised for chain application
- SIMPACK’s renowned and proved integrator (no numerical damping (!))

> **Highest simulation performance and accuracy**

*) available as SIMPACK pre release on request
SIMPACK Chain*:

Ongoing development:

- advanced model setup GUI
- silent chain
- flexible guides
- arbitrary sprocket profiles
- ...
New Time Excitations:

- constant value (selectable as position, velocity or acceleration)
- linear state transition (selectable as position, velocity or acceleration)
Order Analysis:

- amplitude or effective value
- variable hanning window settings

Input:
- crankshaft rotational signal
- arbitrary signal to be analysed

Output:
- response signal for selected engine order

> Engine vibration analysis
SIMPACK ENGINE Database

Database of ready-to-use parameterised models, e.g. **Valve Train**
SIMPACK ENGINE Database

Database of ready-to-use parameterised models, e.g.
Crank Train
SIMPACK ENGINE Database

Easy, fast and reliable **Entire Engine** model setup using SIMPACK’s database concept which includes substructures:
SIMPACK ENGINE:

BASIC
- Rigid Contact
- Dyn. Valvespring (Multimass)
- Hydraulic Lash Adjuster
 ...

ADVANCED*
- Flex. Contact
- Dyn. Valvespring (SIMBEAM)
- FEMBS
- Flex. Valveshaft (SIMBEAM)
 ...

- (E)HD (Impedanz Meth.)
- Gas Force
- FEMBS
 ...

- (E)HD (Online FEM Meth.)
 ...

Valve Train

Crank Train

Gear Wheel

Chain

Timing Belt

Accessory Belt

*) includes BASIC functionality
SIMPACK ENGINE:

- Product suite used for multi-body simulation of crank train, valve train and timing mechanisms
- Basic and Advanced versions
- Database of ready-to-use parameterised models and substructures (easy and comfortable entire engine setup and analysis)
- Fully integrated in standard SIMPACK environment
- Fully compatible with any other SIMPACK product