Monorail Las Vegas

Drive Train Investigation
Content

- Introducing Las Vegas Monorail
- Problem Description
- Drive
 - Overview
 - Model
 - Validation
- Suggestion for Improvement
Las Vegas Monorail – USA

- Fully automated, driverless system
- 6.4 km elevated dual-monorail guideway
- Maximum grade: 6.5%
- Guideway-mounted power rails
- Links eight major resort properties and the Las Vegas Convention Centre
- Seven stations
- Nine four-car trains
- Passenger capacity: 3,200 pphpd
- In revenue service since July 2004

Consortium full turnkey design, build, equipment. Bombardier design and supply of E&M equipment, systems engineering and integration, project management, testing and commissioning.
Las Vegas Monorail
Problem Description and Interim Solution

- **Noise problem („Growling“)**
 - Noise
 - During acceleration & braking
 - In motor cars only
 - Modification of motor converter & control did not solve the problem

- **Root cause & interim solution**
 - High angle of load arm and cardanic shaft was determined as root cause
 - Interim solution: Load arm rides between stations/platforms at safety link
 - Motor moved 1“ outwards
 - Only small angles of cardanic shaft
 - Significant reduction of noise (and loads)

- **Potential of possible solutions had to be figured out**
Train Configuration

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Wheel</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Guide Wheel</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Steering Wheel</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disc Brake</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Motor & Gear</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Drive

- Motor
- Planetary Gear
- Brake Disc
- Bevel Gear
- (Cardanic) Drive Shaft
- Load arm
- Spring
- Guide Wheel
- Load Wheel
- Planetary Gear
- Bevel Gear
- Brake Disc
- Power Rail
Drive
Drive Model

- **Simplified model**
 - Only one drive modelled
 - Guide wheels & steering mechanism omitted

- **Focus on rotating parts**
 - Load wheel
 - Planetary gear
 - Brake disc
 - Bevel gear
 - Cardanic shaft
 - Rotor

- **Properties of parts**
 - Partly valued on the basis of their geometry
Model Validation - Torsional Eigen Modes

<table>
<thead>
<tr>
<th>No.</th>
<th>Damping</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/10</td>
<td>0.13</td>
<td>4.7</td>
</tr>
<tr>
<td>15/16</td>
<td>0.04</td>
<td>60.3</td>
</tr>
<tr>
<td>17/18</td>
<td>0.04</td>
<td>81.0</td>
</tr>
</tbody>
</table>

- Motor out of phase with Brake Disc & Load Wheel
- Measured Frequency is ~ 58 Hz
Model Validation - Time Domain
Model Validation - Frequency Domain

- Test run 7b1
 - Mortlet Spectrogram
 - Gear Box Torque (left)
 - Drive shaft torque (right)
 - Measured values (top) compared to simulated ones (bottom)
Model Validation – Hammer Test

- Torsional input lever attached to the motor side yoke
Model Validation – Transfer Function

- Frequency Response Function - Load Wheel
 - Measured (blue, red) - and calculated (green) data fit well up to ~ 100 Hz
 - Some potential of further improvement may be seen
Integration of Flexible Bodies

- **NASTRAN model of Load Arm**
 - Guyan reduction
 - 30 nodes
 - Calculation of frequency response modes
 - 19 load cases added
 - 13 translational
 - 6 rotational
 - 8 load groups used with respect to maximum frequency of 1500 Hz
 - Problem: Lateral stability of load wheel/tyre
 - No geometric stiffening used
Eigen Modes in FE- and MBS-Model (1)

- FE, $f = 84.5$ Hz
- MBS, $f = 84.9$ Hz, $d = 1.4\%$
Eigen Modes in FE- and MBS-Model (2)

- **FE, \(f = 181.0 \text{ Hz} \)**
- **MBS, \(f = 189.1 \text{ Hz}, \, d = 0.9 \% \)**
Eigen Modes in FE- and MBS-Model (3)

<table>
<thead>
<tr>
<th>No.</th>
<th>Frequency</th>
<th>Damping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FE-Model</td>
<td>MBS-Model</td>
</tr>
<tr>
<td></td>
<td>Hz</td>
<td>Hz</td>
</tr>
<tr>
<td>1</td>
<td>84.5</td>
<td>84.9</td>
</tr>
<tr>
<td>2</td>
<td>181.0</td>
<td>189.1</td>
</tr>
<tr>
<td>3</td>
<td>228.7</td>
<td>239.9</td>
</tr>
<tr>
<td>4</td>
<td>303.0</td>
<td>311.2</td>
</tr>
<tr>
<td>5</td>
<td>367.3</td>
<td>378.4</td>
</tr>
<tr>
<td>6</td>
<td>467.6</td>
<td>491.2</td>
</tr>
<tr>
<td>7</td>
<td>491.9</td>
<td>586.9</td>
</tr>
</tbody>
</table>
FEMBS- versus pure MBS-Model

Graphs showing load and displacement over time for different models and shafts.
Suggestion for improvement

- **Solutions to be investigated**
 - Torsional damper
 - Highly flexible coupling
 - Stiff/soft motor suspension
 - Constant-velocity joints instead of universal (cardanic) joints

- **Procedure of investigation**
 (Example: Torsional damper)
 - Extension of SIMPACK model by
 - Output (angular velocity)
 - Input (torque)
 - Linearization
 - Export state-space-matrices to MATLAB/SIMULINK environment
 - Investigation of observability and controllability
 - Adding the liner damper in MATLAB/SIMULINK
 - Calculation of pole-zero-map to identify properties of the damper
 - Refining the SIMPACK model
 - Investigation in time domain
Investigation in Frequency Domain
Pole-Zero-Map
Investigation in Time Domain

- **Investigation in frequency domain** shows high potential of improvement, especially for oscillation at 60 Hz
- **Investigation in time domain** did not confirm this expectation

Problem
- High moment of inertia required (similar to rotor)
- Space
- Well-tuned friction