MBS/FEM Co-Simulation Approach for Analyzing Fluid/Structure-Interaction Phenomena in Turbine Systems

Martin Busch and Bernhard Schweizer
Department of Mechanical Engineering
Multibody Systems
University of Kassel

SIMPACK User Meeting
Salzburg, May 18-19, 2011
Outline:

- Introduction: General Aspects of Coupled Simulation
- Example of MBS/PDE Coupling: Rotor/Bearing System of a Turbocharger
- Three Coupling Approaches:
 - Full-Implicit Approach
 - Explicit Multirate Approach
 - Semi-Implicit Approach
- Numerical Results: Run-up Simulation of a Turbocharger
Aspects of Coupled Simulation: *Decomposition*

Idea:
- Split overall system into (two) subsystems, coupled by input and output variables
- Coupling loop created
General Integration Scheme: *Multirate Approach*[1]

Macro-Time Step \(T_{N-1} \rightarrow T_N: \)

Step 1: Subsystem 1

- Coupling variables at \(T_{N-j} \) (\(j=1,\ldots,N \)) are known
- Integrate **Subsystem 1** from \(T_{N-1} \) to \(T_N \) using extrapolated coupling variables \(u_1 := \tilde{y}_2 \)
- Compute output variables \(y_{1,N} \)
- Communicate output variables \(y_{1,N} \) to **Subsystem 2**

Remark:

- **Weak Coupling:** Coupling loop is cut through \(\rightarrow \) Sequential or parallel integration of subsystems
- Communication-time grid (“macro-time grid”) is required for data exchange
Macro-Time Step $T_{N-1} \rightarrow T_N$:

Step 2: Subsystem 2

- Integrate **Subsystem 2** from T_{N-1} to T_N using interpolated coupling variables $u_2 := \tilde{y}_1$
- Compute output variables $y_{2,N}$
- Communicate output variables $y_{2,N}$ to **Subsystem 1**

→ Steps 1/2 are repeated at next macro-time step $T_N \rightarrow T_{N+1}$

Remark:
- Coupling scheme is an explicit method w. r. t. the coupling variables
 → Numerical instabilities may arise\[^2\]
Examples for Coupled Simulations

Coupling „Multibody Systems“ (MBS) with „Partial Differential Equations“ (PDE):

- Fluid/structure interaction[^3]
- Simulating contact between MBS and flexible structures[^4]
- MBS coupled with electromechanical fields[^5]
- etc.

Problems:

- MBS is commonly solved by implicit time-integration method
- PDE models have large numbers of DOFs

 → MBS/PDE coupling: huge systems and large CPU time

Task:

- Develop efficient co-simulation techniques

 → Reduce number of PDE computations
Outline:

• Introduction: General Aspects of Coupled Simulation

• Example of MBS/PDE Coupling: Rotor/Bearing System of a Turbocharger

• Three Coupling Approaches:
 • Full-Implicit Approach
 • Explicit Multirate Approach
 • Semi-Implicit Approach

• Numerical Results: Run-up Simulation of a Turbocharger
Example: *Turbocharger Simulation*

- Motion of shaft and ring induces an oil flow in the inner and outer oil gap of the bearing
 - Oil flow leads to pressure generation in the fluid films
 - Pressure fields are obtained by solving a PDE (Reynolds eq.)
- Resulting hydrodynamic bearing forces/torques influence shaft and ring motion
Force/Displacement Coupling

MBS: Equations of Motion

\[
\ddot{u}_{MBS} = \ddot{u}_{MBS}(q, v)
\]

FE Model: Discretized Reynolds Equation

\[
0 = \Omega^i (\Pi^i, \dot{\Pi}^i, u^i_{FEM})
\]

Remark:

- Bearing forces/torques of the 4 fluid films are computed by 4 FE models.
- No „direct feed-through“ in both output equations.
 - Numerical coupling approaches are zero-stable, if zero-stable solvers are applied\(^6\).
 - Co-simulation will converge, if communication-step size is sufficiently small.
IPC Interface:
- Instances of FE model are computed in parallel on different CPUs
- COMSOL processes are coupled with SIMPACK solver by user subroutine
 → Implicit SIMPACK solver is master and defines the (variable) communication-step size
- Communication is accomplished with TCP/IP network interface
- Different coupling approaches are implemented in a user subroutine
Outline:

- Introduction: General Aspects of Coupled Simulation
- Example of MBS/PDE Coupling: Rotor/Bearing System of a Turbocharger
- Three Coupling Approaches:
 - Full-Implicit Approach
 - Explicit Multirate Approach
 - Semi-Implicit Approach
- Numerical Results: Run-up Simulation of a Turbocharger
Remark:
- Consider two subsystems: **Subsystem 1** (SIMPACK), **Subsystem 2** (COMSOL)
- Macro-time step $T_{N-1} \rightarrow T_N$

Coupling Approach 1:
- PECE solver of **Subsystem 1** calls **Subsystem 2** after all corrector steps $k=0, \ldots, k_N$
- Approach is implicit w. r. t. coupling variables \rightarrow Coupling approach is stable
- Large number of FE-subsystem calls

Coupling Approaches: *Implicit Waveform Iteration*[^7,8]
Outline:

- Introduction: General Aspects of Coupled Simulation
- Example of MBS/PDE Coupling: Rotor/Bearing System of a Turbocharger
- Three Coupling Approaches:
 - Full-Implicit Approach
 - Explicit Multirate Approach
 - Semi-Implicit Approach
- Numerical Results: Run-up Simulation of a Turbocharger
Coupling Approach 2:

- Using polynomial extrapolation $\tilde{y}_{2,N}(t = T_N)$ for approximating input u_1 during corrector iteration → Inputs do not vary during corrector steps k

- PECE solver of **Subsystem 1** calls **Subsystem 2** only after the **last** corrector step k_N → Only 1 FE-subsystem call in each macro step

- Approach is explicit w. r. t. coupling variables → This may entail numerical instabilities

Diagram:
- **Subsystem 1**
 - Predictor
 - Corrector Iteration
 - FE-Subsystem Call
- **Subsystem 2** (FE Subsystem)
 - Polynomial $\tilde{y}_{2,N}(t)$
 - $u^{(k)}_{1,N} = \tilde{y}_{2,N}(T_N)$
Outline:

• Introduction: General Aspects of Coupled Simulation
• Example of MBS/PDE Coupling: Rotor/Bearing System of a Turbocharger
• Three Coupling Approaches:
 • Full-Implicit Approach
 • Explicit Multirate Approach
 • Semi-Implicit Approach
• Numerical Results: Run-up Simulation of a Turbocharger
Coupling Approaches: *Semi-Implicit Approach*[^9]

Coupling Approach 3:

- **Linearization** ψ of output y_2 w. r. t. y_1 at time T_{N-1}
 - Used for approximation of input u_1 at T_N
 - Varying input during corrector iteration

- **PECE solver of Subsystem 1** calls **Subsystem 2** after the last corrector step k_N
 - Only 1 FE-subsystem call in each macro step

- Approach is semi-implicit w. r. t. coupling variables
 - More stable than explicit multirate approach
 - Number of FE-subsystem calls may further be reduced[^9]

- Jacobian required for linearization
 - Computed numerically and in parallel

[^9]: [9]
Outline:

• Introduction: General Aspects of Coupled Simulation
• Example of MBS/PDE Coupling: Rotor/Bearing System of a Turbocharger
• Three Coupling Approaches:
 • Full-Implicit Approach
 • Explicit Multirate Approach
 • Semi-Implicit Approach
• Numerical Results: Run-up Simulation of a Turbocharger
Numerical Results: *Rotor Run-Up Simulation*

- Run-up simulation of rotor: Increase angular velocity ω linearly up to 1800Hz in 5s
- Semi-implicit approach: 16 parallel processes (4 forces and 12 gradients) computed on 4 quadcores
- CPU time for one Reynolds equation (PDE) ~ 2s

- Vibration behavior of rotor is highly nonlinear\(^{[10]}\)
 - Different bifurcations occur
 - Complex quasiperiodic rotor motion
Numerical Results: *Comparison of Coupling Approaches*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Time:</td>
<td>~5,5 Months</td>
<td>~5 Months</td>
<td>~39 Days</td>
<td>~32 Days</td>
</tr>
<tr>
<td>RHS Calls of MBS Solver</td>
<td>7209803</td>
<td>25602856</td>
<td>7895432</td>
<td>8672692</td>
</tr>
<tr>
<td>Number of FE-Subsystem Calls:</td>
<td>7209803</td>
<td>6435195</td>
<td>1702765</td>
<td>1385608</td>
</tr>
<tr>
<td>BDF-Step Size for Stable Time Integration</td>
<td>1e-5</td>
<td>5e-7</td>
<td>1e-5</td>
<td>1e-5</td>
</tr>
<tr>
<td>TOL=1e-4 D</td>
<td></td>
<td></td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>TOL=1e-3 E</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>TOL=1e-2 F</td>
<td></td>
<td></td>
<td></td>
<td>G</td>
</tr>
<tr>
<td>TOL=1e-1 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Global Error of Reduced Semi-Implicit Approach

Relative Global Error

User-defined Tolerance TOL

Number of Calls

RHS Calls of MBS Solver

[^9]: Reduced Semi-Implicit Approach
Aim: Develop an efficient coupling interface for MBS and FE tools

SIMPACK/COMSOL-Interface:

- Variable communication-time grid
- Parallel computation of FE models
- Standard coupling approaches practically fail because of large CPU times:
 - Full-implicit approach entails large number of FE-subsystem calls
 - Explicit multirate approach requires small communication-time steps for stable simulation
- Semi-implicit coupling approach yields practicable CPU times:
 - Approach is stable
 - Number of FE-subsystem calls can be reduced significantly
References

