Using the Advantages of SIMPACK‘s Linear System Interface to MATLAB®
Table of content

<table>
<thead>
<tr>
<th></th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>General on Linear Systems in SIMPACK and MATLAB</td>
</tr>
<tr>
<td>3</td>
<td>Examples</td>
</tr>
<tr>
<td>3.1</td>
<td>Drive Chain Investigation</td>
</tr>
<tr>
<td>3.2</td>
<td>Implementing an Observer</td>
</tr>
<tr>
<td>4</td>
<td>Summary</td>
</tr>
</tbody>
</table>
Introduction

- Linear methods are commonly used in the field of vehicle dynamics
- History leads back to the famous formula found by Klingel in 1883
- SIMPACK offers a number of methods like
 - Eigen values and –vectors
 - Linear System Analyses
 - Critical Parameter Investigation
- However, in some special cases additional methods would be very helpful or simply the presentation of the results should be improved
- In these cases the Linear System Interface is very helpful, e.g. the export of Linear System Matrices to MATLAB
Linear Systems in MATLAB

- **LTI-Objects**
 - **SISO**
 - „Single Input Single Output“ System
 - Most commonly described by its Transfer Function (TF) or even Frequency Response Function (FRF)
 - **MIMO**
 - „Multiple Input Multiple Output“ System
 - Either described by a set of Transfer Functions or a so-called State-Space-Description (SS)
 - FRF may converted to SS and vice versa (tf2ss, ss2tf)

\[
G(s) = \frac{\sum b_{nn} * s^{nn}}{\sum a_{nd} * s^{nd}}
\]

\[
\begin{align*}
\frac{dx}{dy} &= Ax + Bu \\
y &= Cx + Du
\end{align*}
\]
Export a Model

Preparation:
Define a input $u(t)$ instead of a time excitation!

Consider using the ParVariation to export the model

All names of states, inputs and outputs are available in MATLAB!
Example 1 – Drive Chain Oscillation

- **Aim**
 - Establish countermeasures to torsional vibration of wheelset
 - This kind of vibration may occur if the traction control fails, e.g. an operating point behind the maximum of adhesion is stabilized
 - This kind of vibration covers a high risk for damaging the wheel nave or the wheelset axle itself
 - The speed sensor is the favorite base to implement a supervision

- **Task**
 - Calculate the mechanical admittance or mobility
Example 1 – Drive Chain Oscillation

- **Process**
 - Add the necessary outputs to the model
 - Angular velocity of the rotor
 - Angular velocities of the wheels (E.g. in order to prepare tests with the laser-vibrometer)
 - Torque at the wheel set axle
 - Force in torque reaction rod
 - Check for equilibrium state
 - Export/import the model
Example 1 – Drive Chain Oscillation

- **Observability**
 - Definition:
 - The system sys is (fully) observable, if its observability matrix
 \[
 O = \begin{bmatrix}
 C \\
 CA \\
 CA^2 \\
 \vdots \\
 CA^{n-1}
 \end{bmatrix}
 \]
 has full rank
 - MATLAB command
 - `rank(observf(sys.a,sys.b,sys.c))`
 - Consider also to check for detectability

- **Controlability**
 - Definition:
 - The system sys is (fully) controllable, if its controllability matrix
 \[
 R = \begin{bmatrix} B & AB & A^2B & \ldots & A^{n-1}B \end{bmatrix}
 \]
 has full rank
 - MATLAB command
 - `rank(ctrbf(sys.a,sys.b,sys.c))`
 - Consider also to check for stabilizability
Example 1 – Drive Chain Oscillation

- **LTI-Viewer**
 - Fast and detailed overview of general system behavior
 - One, two or more systems may be handled at once!
 - Invoke the LTI-Viewer interactively or e.g. by the MATLAB-command

```matlab
ltiview('bodemag', drive_stick(:,1:3), drive_slip(:,1:3),
        logspace(-1,2,1000)*2*pi);
```
Example 1 – Drive Chain Oscillation

In SIMPACK the necessary figures must be read from the file `<model>.eva` and further processed by hand.

After exporting the SIMPACK model “drive” to MATLAB use the following commands:

- \[[V, D] = \text{eig}(\text{drive.a}) \]
- \[f = \frac{\text{imag}(\text{diag}(D))}{2\pi} \]
- \[y = \text{drive.c} \times V \]
- Calculate and normalize the absolute values

This process is more stable and may be integrated in the quality management.

<table>
<thead>
<tr>
<th>EV.No:</th>
<th>3 / 4</th>
<th>5 / 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re</td>
<td>-2.0979E+01</td>
<td>2.2014E+02</td>
</tr>
<tr>
<td>Im</td>
<td>3.520E+01</td>
<td>-6.5083E+00</td>
</tr>
<tr>
<td>f0 [Hz]</td>
<td>5.252E+01</td>
<td>3.2993E+02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EV.No:</th>
<th>3 / 4</th>
<th>5 / 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re</td>
<td>-2.0979E+01</td>
<td>2.2014E+02</td>
</tr>
<tr>
<td>Im</td>
<td>3.520E+01</td>
<td>-6.5083E+00</td>
</tr>
<tr>
<td>f0 [Hz]</td>
<td>5.252E+01</td>
<td>3.2993E+02</td>
</tr>
</tbody>
</table>

In MATLAB:

- \[[V, D] = \text{eig}(\text{drive.a}) \]
- \[f = \frac{\text{imag}(\text{diag}(D))}{2\pi} \]
- \[y = \text{drive.c} \times V \]
- Calculate and normalize the absolute values

This process is more stable and may be integrated in the quality management.

<table>
<thead>
<tr>
<th>body.cm: $B_{\text{Wheel_left}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
</tr>
<tr>
<td>0.2983</td>
</tr>
<tr>
<td>0.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>body.cm: $B_{\text{Wheel_right}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
</tr>
<tr>
<td>0.1265</td>
</tr>
<tr>
<td>0.0000</td>
</tr>
</tbody>
</table>
Example 1 – Drive Chain Oscillation

- Investigation may be continued e.g. by closing the loop with any control or other subsystem, e.g. the electrical part of the motor
 - The asynchronous motor is non-linear, i.e. we have to linearize the model for each operating point separately
 - MATLAB commands:
    ```matlab
    asm_drive_ff = feedback(drive(1,1),asm_ff,1,1,+1);
    pzmap(asm_drive_ff, pzopts)
    sgrid([0.05:.05:.25],[0:2.5:10]*2*pi)
    ```
Example 1 – Drive Chain Oscillation

- **Result:**
 - The unit of motor & drive may oscillate for certain frequencies depending on
 - Control of the converter & motor
 - Design of the motor
 - Saturated adhesion
 - Low rotor temperature
Example 2 – Implementing an Observer

- **Aim**
 - Identify track disturbances during standard service, e.g. without specialised measuring car
 - Sensors already defined
 - Standard vehicle dynamics model available (Thanks to my colleague C. Bussmann!)

- **Task**
 - Use an observer, e.g. a so-called Kalman Filter in order to estimate the states of the bogie and finally the track disturbances
Example 2 – Implementing an Observer
Example 2 – Implementing an Observer

- Basics of Kalman Filtering
Example 2 – Implementing an Observer

- **Process**
 - Simplify the SIMPACK model in order to reduce the number of DOF
 - Select the appropriate WRC model
 - “elastic” -> D-matrix is empty
 - “constraint” -> D-matrix may be not empty
 - Define the necessary inputs and outputs
 - Export the state-space model to MATLAB
 - Create the observer using the Control System Toolbox using the covariance matrices of disturbances QN, RN, NN
 - \([\text{KEST}, \text{L}, \text{P}] = \text{kalman}(\text{bogie}, \text{QN}, \text{RN}, \text{NN}, \text{sensors}, \text{known_inputs})\)
 - Implement the observer to SIMPACK, e.g. using the control element FE 142: AD-Filter: A,B,C,D > File
 - Validate the observer
 - Versus the non-linear simulation by SIMPACK
 - Versus the measurements at the test stand
Example 2 – Implementing an Observer

FLEXX Track
Cross Level Estimation using advanced Kalman Filter

![Diagram of FLEXX Track system](image)

- Track Data
 - Measured
 - Karhausen - Dillingen

- FLEXX Track Bogie

- Kalman Estimator
 - zeros(s)
 - poles(s)

- Scope

- Cross Level
 - Virtual Reality
 - Estimation

© Bombardier Inc. or its subsidiaries. All rights reserved.
Summary & Outlook

- **Summary**
 - SIMPACK’s Linear System Interface to MATLAB
 - Increases the capability to
 - Analyze complex systems like railway vehicles by advanced linear methods
 - Synthesize advanced (e.g. model-based) control systems
 - Allows to share the workload between specialists

- **Outlook**
 - Investigation/prediction of Structure born Noise in the range (10 ... 1000) Hz