Development of a SIMPACK User Routine for Dynamic Light Rail Vehicle Gauging Simulations

Gero Zechel, Michael Beitelschmidt (TU Dresden)
Helmut Netter (Bombardier Transportation)
1. Light Rail Vehicle Gauging
2. Input and Implementation Concept
3. Data Structure and Algorithm
4. Filtering and Postprocessing
5. Output Examples
6. Conclusion
Gauging basics
- Vehicles have to fit the structure gauge / minimum clearance outline
- Vehicles may not touch platforms or catenary masts
- Vehicles may not touch in two-way traffic

Challenges
- Complex kinematics and dynamics of modern LRV
- Huge variety of vehicle configurations
- Unique infrastructures in cities worldwide

Target
- Flexible and efficient method to simulate the dynamic vehicle envelope
- Embedded in full-scope MBS simulations in each vehicle development phase

Questions
- Which additional inputs are needed?
- How can the dynamic vehicle envelope be described and calculated precisely during simulation?
- What outputs are needed and valuable?
Vehicle shape

- The contour is described at relevant cross sections (horizontally and vertically)
- *Input functions* can be used to describe cross sections (vehicle width over length or height)
- The position and orientation can be defined by *Body Fixed Markers*

Model integration

- *SIMPACK User Result Element* written in Fortran
- *Result Elements* of this Type can be included multiple times for each needed cross section in the model
- Full GUI Integration in *Model Setup: Input Functions and Markers* can be picked from Drop-Down-Menus
- *Result Elements* run offline in the *Measurement* stage
- They are called beforehand, at each measurement step and afterwards
Memory allocation

- *Result Elements* can allocate memory via *SIMPACK Access Functions*
- It is persistent during the full measurement run

Four data arrays are used

1. global and persistent variables
 track length, step sizes, data structure dimensions etc.

2. time-domain data set
 absolute positions at certain time steps, used for visualization and for sanity checks

1. infrastructure related data set
 reference system is a grid on top of the track centerline, updated at each measurement step

2. vehicle related data set
 reference system is the vehicle x- or z-axis, updated at each measurement step
Algorithm for each measurement step

- Scan contour functions in mm-steps
- Calculate isys-position of each of these contour points
- Determine the distance to the plane on top of the track centerline

- **Update infrastructure related data**
 - Match the measured distance to one square of the grid on top of the track centerline
 - Check if a new maximum distance is observed at this grid field
 - If so, store this value and the index of the responsible contour point

- **Update vehicle related data**
 - Check if a new maximum distance is observed for this contour point
 - If so, store this value and the index of the track point where the distance is reached
Filtering infrastructure related data
- Dimension of the output data can be reduced by condensing maximum distances over multiple grid fields
- By condensating fields vertically, maximum distances from the track centerline can be gained
- By condensating fields horizontally, conventional plots of the structure gauge of longer track sections can be gained

Postprocessing
- The calculated one-dimensional output vectors can be easily plotted in the SIMPACK Postprocessor
- There, the results of all cross sections of a vehicle can be overlayed
5 Output examples

- Simple five-car kinematic model (left)
- Maximum distance of the first three cars from the track centerline is plotted
- It can be easily determined
 - which car takes the most space
 - where along the track the most space is needed
Finding the causes

- The indexes of the contour points that are responsible for the maximum distance can be plotted in the same figure.
- It can be determined what contour point causes the maximum distance from the track centerline at each point of track.

Dynamic vehicle outline

- The maximum distances in the vehicle related data set can be plotted beside the static contour.
- Critical contour points are getting apparent.
Top-down view
- The absolute positions of the vehicle contours can be plotted using the time-domain data set.
- The example plot shows the contours of the first three cars at certain time steps.
- Together with the track centerline and the dynamic envelopes of the cars, this visualizes the overall kinematics.
Plotting safety margins

- The dynamic envelope can be plotted projected onto the ground
- This can be highly useful when analysing two-way traffic situations
Conventional gauge

- The structure gauge / minimum clearance outline can be gained from the same data set
- This example shows the influence of a wind load on a straight track
6 Conclusion

- Seamless integration of a gauging tool into SIMPACK achieved
- By using Result Elements, Input Functions, Body Fixed Markers and Output Channels it can be used throughout SIMPACK (Model Setup GUI, Databases, ParVar, SIMPACK Postprocessor)
- High precision in calculating and storing the dynamic envelope
- Low CPU time and low memory footprint
- Gauging simulations are feasible throughout vehicle development
»Wissen schafft Brücken.«