Joint Optimization of Noise & Vibration Behavior of a Wind turbine Drivetrain

Stefanie Sommer-Eisold, Power-Train, Vestas Nacelles Deutschland GmbH
Ben Marrant, ZF Wind Power Antwerpen NV

Source: www.vestas.com
Agenda

1. Company presentation
2. Introduction
3. Mechanical noise
4. Workflow
5. Models
6. Results
7. Model validation
8. Conclusions
ZF Wind Power – Global Footprint

A cooperation between Vestas® and ZF

More than 10,000 MW capacity for wind gearboxes

Gainesville, GA, USA
Start 2011
Production: 23,000 m²
Employees: 70
Product range: 2 MW
Capacity: 1000 MW
Opening: 2011
Designed according to ZF automotive standards

Lommel, Belgium
Start 2001
Production: 110,000 m²
Employees: 700
Product range: up to 6 MW
Capacity: 5500 MW

Coimbatore, India
Start 2008
Production: 95,000 m²
Employees: 592
Product range: up to 3 MW
Capacity: >3000 MW

Tianjin, China
Start 2009
Production: 95,000 m²
Employees: 128
Product range: up to 3 MW
Capacity: >1000 MW
Vestas

Vestas in brief

The only global wind energy company

Vestas locations around the world

Vestas has a unique global reach in sales, installation and manufacturing

External analysts have Vestas as a clear No. 1 in 2013 with a market share (onshore and offshore) of more than 13%

Source: Vestas: Corporate Presentation2014Q1;
Introduction

For the development of a new gearbox Vestas and ZFWP decided to cooperate in the drive train development process

- starting from the design stage
- working together in a structured way
- in noise and vibration challenges:
 - Local tonality requirements e.g. Germany
 - Reduction of tonal masking because of:
 - Possibility to use wind turbines at wind sites with low average wind speed
 - Lower cut-in speed of wind turbines to increase power production
 - Cooperation by means of:
 - Knowledge sharing
 - Model sharing
 - New methods

Product development process in case of Changes

Influence

Start point

Milestone 1

Milestone 2

…

Milestone n

Increasing knowledge about dynamic behavior of system and gearbox

resources

information

Time
Mechanical noise

How does mechanical noise (tonality) in a wind turbine occur?

Transfer path of mechanical noise (gearbox as example)

Source: gear mesh, (bearings, pumps)
Structure borne transfer path inside / outside gearbox
Airborne radiation by gearbox / by other components
Mechanical noise

- Sources: gearbox, generator, cooling fans, …
- Radiator: blades, tower, …
- Primarily tonal content, not determining WT overall SPL

Petitjean et al. (2011) [1]
Joint Development of a Wind Turbine Drive Train with respect to Noise and Vibrations

A cooperation between Vestas and ZF

Workflow

Simulations

Identification of most important eigenfrequencies

Consideration of different criteria
• Order meshes
• Rotational speed histogram
• Low noise modes

Classification of potential risks

• Prediction of gearbox quality
• Validation of gearbox model

• Estimation of tonality risks in the field

Frequency

Speed
Joint Development of a Wind Turbine Drive Train with respect to Noise and Vibrations

A cooperation between Vestas and ZF

Models: Gearbox

Flexible planet carrier assembly: reduced FE model

Flexible shafts: reduced 1-DOF FE model

Flexible housing assembly: reduced FE model

Gears:
- Rigid bodies
- FE 225

Accelerometer master nodes

Linearized bearing stiffnesses: 6x6 matrices
Models: development process

A cooperation between Vestas and

- Torsional DOF

- 6 DOF
- Flexible gearbox housing
- Rigid planet carriers
- Old bearing stiffness’s

- 6 DOF
- Flexible gearbox housing
- Flexible planet carriers
- Bearing stiffness’s from suppliers

- Update of model parameters by validation
Models: Wind Turbine

- Main bearing stiffness behavior is captured by a U-force (developed by Vestas)
- Blade created with Simpack Rotor Blade generator (extended beam model)
- Main shaft as flex body
- Combined Gallery-Main frame- Tower flex body
- Matlab Simulink model for including wind turbine controller
Joint Development of a Wind Turbine Drive Train with respect to Noise and Vibrations

A cooperation between Vestas and ZF

Models: Test rig

- Gearboxes back-to-back
- Flexible low speed shafts: reduced FE model
- Flexible cardan shafts: reduced FE model
- Generators: rigid bodies
- Flexible assembly of cassette with central bearing and blocks: reduced FE models
Results

Cooperation between WT manufacturer and GBX supplier is necessity because transfer path consists of gearbox and wind turbine.

Proof: Comparison of order slices obtained from speed run-up simulations:

- Vibration amplitudes in wind turbine tend to decrease compared to test rig.
- Dynamics between test rig and wind turbine change.

⇒ System approach required.
Results

Cooperation between WT manufacturer and GBX supplier is necessity because transfer path consists of gearbox and wind turbine

Source: gear mesh, (bearings, pumps)
Structure borne transfer path inside / outside gearbox
Airborne radiation by gearbox / by other components

Estimation of tonality risks
⇒ simulated FRF’s from gear pairs to velocities of various rotor blade stations with system model
Model validation

Gearbox model validation:
- Experimental Modal Analysis (EMA)
- Measurements on back-to-back test rigs
 - Speed run-ups at constant loading
 - Constant speed – constant load

Wind turbine model validation:
- Measurement on system test rig (ongoing)
- Field Measurement on prototype turbine (is planned)
GBX model validation - EMA

A cooperation between Vestas and ZF

- Gearbox on support structure on rubber blocks
- 2 electromechanical shakers
- 294 accelerometer positions
- Tri-axial accelerometers
GBX model validation - EMA

- Correlation analysis based on MAC
- Model updating:
 - Rubber bushing stiffnesses
 - Interconnection stiffnesses between support and gearbox
 - Gear contact stiffnesses
GBX model validation – back-to-back test rig

Validation of the test set-up model ongoing
WT model validation – system test rig

Test of the drive – train and supporting structure:
- Gearbox
- Main frame
- Main shaft
- Supporting structure to yaw system

Vibration measurements:
- 11 accelerometers on gearbox and wind turbine main frame
- Measurement results will be compared with
 - Gearboxes of other suppliers
 - Supplier test results
 - Turbine results
Joint Development of a Wind Turbine Drive Train with respect to Noise and Vibrations

A cooperation between Vestas and ZF

WT model validation – prototype turbine

Vibration measurements
• 22 Tri-axial accelerometers in the nacelle

Noise measurement:
• Microphones:
 • Inside the nacelle close to gearbox
 • Outside the turbine according to standard noise regulations (IEC)
Conclusion

• Cooperation between WT manufacturer and GBX supplier is necessity because transfer path consists of gearbox AND wind turbine
 • Differences in dynamic behaviour of gearbox on test rig or in wind turbine ⇒ system approach required
 • Estimation of tonality risks ⇒ simulated FRF’s from gear pairs to velocities of various rotor blade stations with system model

• Thorough approach has been used:
 • Gradual build-up of state of the art models
 • Experimental validation of models to increase confidence level

• Vestas and ZF Wind Power join forces from early design stage to optimize N&V behaviour of wind turbine drive train
Joint Development of a Wind Turbine Drive Train with respect to Noise and Vibrations

A cooperation between Vestas and ZF Friedrichshafen AG

The documents are created by Vestas Wind Systems A/S and contain copyrighted material, trademarks, and other proprietary information. All rights reserved. No part of the documents may be reproduced or copied in any form or by any means - such as graphic, electronic, or mechanical, including photocopying, taping, or information storage and retrieval systems without the prior written permission of Vestas Wind Systems A/S. The use of these documents by you, or anyone else authorized by you, is prohibited unless specifically permitted by Vestas Wind Systems A/S. You may not alter or remove any trademark, copyright or other notice from the documents. The documents are provided “as is” and Vestas Wind Systems A/S shall not have any responsibility or liability whatsoever for the results of use of the documents by you.

ZF Friedrichshafen AG behält sich sämtliche Rechte an den gezeigten technischen Informationen einschließlich der Rechte zur Hinterlegung von Schutzrechtsanmeldungen und an daraus entstehenden Schutzrechten im In- und Ausland vor.

ZF Friedrichshafen AG reserves all rights regarding the shown technical information including the right to file industrial property right applications and the industrial property rights resulting from these in Germany and abroad.

Source: www.vestas.com