Calculation of the momentum drive and travelled distance of freight trains
Multi-body simulation with SIMPACK

SIMPACK User Meeting
2014 October 8th and 9th, Augsburg
Inhalt

1. Introduction
2. Description of the situation
3. Definition of task
4. Simulation with SIMPACK
5. Conclusion
1. Introduction

Activities of T.TVI24

T.TVI 24
Fatigue Strength and Simulation

T.TVI 24(1)
Simulation of Structural Mechanics and Running Characteristics
- Evaluation of repair measures
- Evaluation of technical systems
- Accident analysis
- Warranty demands
- Side-wind

T.TVI 24(2)
Operational Loads and Strength
- Operational loads and stresses
- Compression tests
- Shunting tests
- Crash tests

T.TVI 24(3)
Operational Strength and Mechanical Function
- Bogie fatigue tests
- Wheel and Shaft tests
- Testing of Side windows
- Performance Testing of Axle boxes
- Testing of hydr. Dampers, Springs etc.
1. Introduction

Multi-body simulation

- **Maintenance**
- **Engineering and design**
- **Accident analysis**
- **Recertification**

MBS

DB Systemtechnik GmbH, T.TVI24(1), Stephan Behringer
2. Description of the situation

- New built Port in Duisburg for combined transportation
 - transportation of ISO-Container between train street and sea
 - maximum freight train length 700 m
 - entry speed 40 km/h of electric locomotives
 - no catenary in the area surrounding the cranes for load cargo
 - entrance over two tracks

Diagram Details:

- Entrance tracks
- 700 m straight track for load cargo without catenary
- Driving direction
- Exit track
2. Description of the situation

- Properties of the entrance tracks:
 - eight switches with radius 190 m to 300 m
 - different vertical profiles of the tracks

Distance start track to end of catenary 698 m

Start track 2307

Start track 2302

End of catenary
3. Definition of task

- Wind speed
 - critical wind speed

- Track properties
 - track profile

- Charging
 - unload and load container
 - unload and load wagons

- Train composition
 - different types of wagons
 - number of wagon types

- Travelled distance of the train
4. Simulation with SIMPACK

Simulation model single freight wagons (complex model)

- Two different types of freight wagons:
 - Lgs 580 with double chain link chassis and two wheelsets
 - Sgns 690 with Y25 bogie and four wheelsets
Restrictions for simulation of trains

- long calculation time
- numerical stability

Three mass model

Forces of resistance
- Calculation by expressions
 - with state variables
 - result of single freight wagon
4. Simulation with SIMPACK

Forces of resistance

Roll resistance

\[W_{Roll} = m \times g \times \alpha \]

\[W_{Roll} \]

Aerodynamic resistance

\[W_{Wind} = \left(c_{w \, wagen} \times A_{wagen} + c_{w \, container} \times A_{Container} \right) \times \rho \times \left[v_{Wind} + v_{Fahrzeug} \right]^2 \times \frac{1}{2} \]

Acceleration resistance

\[W_{arot} = \sum_{i=1}^{n} \frac{J_{yy \, n} \times a_{wagen}}{(r_{n})^2} \]
Curvature resistance is nonlinear and dependent on:

- speed of wagon
- charging
- suspension and chassis
- radius of curvature
- properties of wheel rail contact

Diagram

- comparison of longitudinal friction force between wheel and rail with and without buffer (track 2302) at one wheelset
- rolling resistance included
4. Simulation with SIMPACK

Curvature resistance

Single freight wagon
(complex model)

- Simulation with different boundary conditions for calculation
 - constant speed
 - charging
 - track

- data preparation
4. Simulation with SIMPACK

Curvature resistance

Lgs 580 loaded

Lgs 580 unloaded

Sgns 690 loaded

Sgns 690 unloaded

DB Systemtechnik GmbH, T.TVI24(1), Stephan Behringer
4. Simulation with SIMPACK

Coupler and buffer

complex model
- **coupler**
 - use hysteresis
 - characteristic stiffness curve
- **buffer**
 - use hysteresis
 - characteristic stiffness curve
 - stick-slip contact

simple model
- **coupler and buffer**
 - linear stiffness
 - hydraulic damping
Travelled distance of a single wagon

<table>
<thead>
<tr>
<th>Variant</th>
<th>Lgs 580</th>
<th>Sgns 691</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single freight wagon</td>
<td>Three mass model</td>
<td>Difference</td>
</tr>
<tr>
<td>1</td>
<td>474 m</td>
<td>478 m</td>
<td>+0.8 %</td>
</tr>
<tr>
<td>2</td>
<td>715 m</td>
<td>719 m</td>
<td>+0.6 %</td>
</tr>
<tr>
<td>3</td>
<td>849 m</td>
<td>860 m</td>
<td>+1.3 %</td>
</tr>
<tr>
<td>4</td>
<td>930 m</td>
<td>935 m</td>
<td>+0.5 %</td>
</tr>
</tbody>
</table>
4. Simulation with SIMPACK

Simulation model of the freight train

- Properties of freight train models
 - 20 wagon train (ca. $m = 900 \text{ t}$, length 366 m)
 - 35 wagon train (ca. $m = 1500 \text{ t}$, length 634 m)
Simulation of the momentum drive and traveled distance with SIMPACK

Possible to simulate different constellations of trains including aspects of:
- Type of freight wagon
 - Suspension, chassis, mass…
- Track properties
 - Curvature and vertical profiles
- Charging
- Coupling between wagons
 - Properties of buffer and coupler
- External forces
 - Air resistance and wind resistance,…
Thank you!

DB Systemtechnik GmbH
Fatigue Strength and Simulation T.TVI 24
Stephan Behringer
Pionierstraße 10
32423 Minden
Tel.: +49 571 393 1801
E-Mail: Stephan.Behringer@deutschebahn.com