An Investigation into the Effects of Rolling Element Bearing Flexibility in a Wind Turbine Planetary Gearbox

20th November 2007
Nawazish Ali Zaidi, Richard Dorling and Andy Poon
Romax Technology Limited, Nottingham, UK
• Planetary gear systems are most suitable for wind turbine application due to their large power transfer capacity.

• Robust performance in terms of power transfer capacity requires “Equal load sharing” among the planets.

• This can be achieved by allowing the sun to float and take up any variation in the meshing with the planets by the lateral movement of the sun.

• Equal load share can also be enhanced by making the planet pins flexible, or changing the stiffness of the planet bearings. This also allows any manufacturing errors to be absorbed.

• Flexibility in the mounting of the planets can also be used to reduce the impact of shock loads. However, when such flexibility is combined with floating elements, such as the sun and planet carrier, the vibration of the system as a whole can become an issue, especially the whirling motion of the floating elements.
Wind Turbine Gearbox
Transient loading in WT

AGMA: Rotor shaft torque during braking event
• Conventionally, multi-body software will use either a linear model or a force-displacement curve for bearing.

• Romax’s bearing model has advanced capabilities that use actual contacts of the bearing elements with the races to calculate forces for each simulation step.

• Each directions force/moment is coupled to displacements/tilts in all six directions which is not practical to do by a look-up table.

• By interfacing this full non-linear coupled bearing module with SIMPACK, the dynamic analysis ability and accuracy of SIMPACK is significantly enhanced.
Romax non-linear bearing model

Displacement vs Load

Tilt vs Moment
• The Romax bearing is implemented in Simpack by interfacing through user routines available in Simpack.

• A single bearing is selected within Simpack model from the Romax bearing database based on the following criterion
 • the manufacture catalogue name
 • Bearing diameter
 • Bore
 • Width
 • The mounting direction and preload on the bearing can also be defined.
Objectives of the analysis

- To confirm that the planet carrier and sun orbits are present in the dynamic simulation.
- To examine the effect of bearing stiffness on planet carrier and sun orbits.
- To examine the requirement of non-linear bearing models as opposed to linear models.
- To examine the dynamic response to shock loading.
The System

- This paper examines a planetary system with floating sun and planet carrier, and flexible planet mounts.

- The system to be studied is a relatively simple system, but has complex behaviour of interest in the design of gearboxes (especially wind turbines).

- The system is a three planet epicyclic gear set. Flexible pins are used to support the planet wheels, and the planet carrier and sun wheel are allowed to float.

- The floating behaviour of the sun and planet carrier is achieved by using bearings with low tilt stiffness to support the planet carrier and sun shafts.
The System

Input Shaft

Ring gear

Planet gear

Sun gear

Output shaft

Planet carrier

Flexible planet pin

Planet Carrier

Planet bearings

Flexible section
Simpack Model

Floating Sun

Flexible Pins
System Analysis
Linear Bearing (Simpack bushing)

- Quasi-static analysis to compare the planet load share and whirling of the sun and carrier when the system rotates slowly (1 RPM)
- The dynamic analysis when the system rotates at high speed (80 RPM)
- In both cases the stiffness of the planet pins were changed from 1e6 N/m to 1e7 N/m.
- The analysis was performed with 40%, 60%, 80% and 100% of the rated torque.
• Planet load share is the load (torque) carried by each planet at a given instant in time.
• The planet load share varies with load, due to gravitation effects which dominate the load share at low loads.
• The planet load share results from Simpack were verified using results from a similar model in RomaxDesigner.
• As RomaxDesigner only carries out quasi-static analysis, the Simpack simulations where carried out at low speed to minimise acceleration/centripetal effects not modelled in RomaxDesigner.
• Precession of the sun or planet carrier is the motion of the centre of the Sun gear or planet carrier.

• Due to fluctuations in the loads between the sun and planets both the sun and planet carrier centres will tend to follow an orbital path.
Quasi-Static Precession (linear) rotation at 1 RPM

Sun_precession

Carrier_precession

Simpack bushing linear bearing
Quasi-Static Precession (All loads) rotation at 1 RPM

Simpack_bushing_Sun_precession

-1.50E-06 -1.00E-06 -5.00E-07 0.00E+00 5.00E-07 1.00E-06 1.50E-06 2.00E-06

Y-Disp

X-Disp

Simpack_bushing_Carrier_precession

-4.00E-06 -3.00E-06 -2.00E-06 -1.00E-06 0.00E+00 1.00E-06 2.00E-06 3.00E-06

Y-Disp

X-Disp

Simpack_bushing_Sun_precession

-8.00E-06 -6.00E-06 -4.00E-06 -2.00E-06 0.00E+00 2.00E-06

Y-Disp

X-Disp
Quasi-Static Precession Results

Sun

- The motion of the sun shows that with the softer planet pin there is a mode of vibration of the system with a similar frequency to the planet passing frequency.

- At all loads the stiffer pin increases the level of vibration (whirl) of the sun.

Planet Carrier

- In case of the carrier, similar trends are observed. The stiffer planet pin increases the vibration slightly compared to the softer pin.

- However in both the sun and carrier the whirl in case of 40% load at 1e6 N/m has increased vibration and is comparable to the planet pin stiffness at 1e7 N/m.
Dynamic Precession (linear) rotation at 80 RPM

Sun precession

Carrier precession

Simpack bushing linear bearing
Planet passing vibration (3 times input frequency)

Sun

- The motion of the sun shows that with the softer planet pin there is a mode of vibration of the system with a similar frequency to the planet passing frequency.

- At all loads the stiffer pin increases the level of vibration (whirl) of the sun.

Planet Carrier

- The vibrations levels versus load also behave exactly as for the sun, with the stiffer pin reducing vibration as low loads, but increasing it greatly at higher loads.
• Romax has developed a bearing component for Simpack which allows Romax’s accurate, non-linear bearing models to be incorporated into a Simpack model.

• In the model the planet bushings were replaced by the Romax bearings and both the Quasi-static and Dynamic analyses were repeated.

• Planet load share was obtained by running the model at 1%, 2%, 5%, 10%, 20%, 40%, 60%, 80% and 100% of the rated load.
Planet load share versus torque - based tangential forces

- Planet A
- Planet B
- Planet C
Quasi-Static Precession
system rotation at 1 RPM

Romax non linear bearing in Simpack model
Quasi-Static Precession 1RPM
(Romax non linear bearing)

![Graphs showing Romax Sun precession and Romax Carrier precession](image-url)
Quasi-Static Precession Results
system rotation at 1 RPM

Sun

- The motion of the sun shows that with the softer planet pin there is a mode of vibration of the system with a similar frequency to the planet passing frequency.
- At all loads the stiffer pin increases the level of vibration (whirl) of the sun.

Planet Carrier

- As with the sun gear, the motion of the planet carrier shows that with the softer planet pin there is a mode of vibration of the system with a similar frequency to the planet passing frequency.
- In case of the carrier, 40% and 60% load has less vibrations for stiffer pin than the softer pin. However for increased loads the stiffer pin increases the vibration slightly compared to the softer pin.
Dynamic analysis results (80 RPM)
Romax non linear bearing

![Graph showing Romax bearing Sun precession with data points at various Y-Disp and X-Disp values.](image-url)
Dynamic analysis Results

system rotation at 80 RPM

Planet passing vibration (3 times input frequency)

Sun

• The motion of the sun shows that with the softer planet pin there is a mode of vibration of the system with a similar frequency to the planet passing frequency.

• The stiffer pin reduces the level of vibration (whirl) of the sun in case of the non-linear bearings.

Planet Carrier

• The vibrations levels versus load also behave exactly as for the sun, with the stiffer pin reducing vibration.
Bearing forces during transient period of the step input.
The whirl diameter of the carrier is approximately 200 μm during transient period.
The whirl diameter of the Sun is approximately 800 µm during transient period.
• The results are compared with the Romax non-linear bearings and Simpack bushings element.
Quasi-Static Precession Results
system rotation at 1 RPM

Sun_precession

Carrier_precession
Quasi-Static Precession Results
system rotation at 1 RPM

Sun precession

Y-Disp
X-Disp

Simpack_Sun_1RPM_1e6
Simpack_Sun_1RPM_1e7
Romax-Sun_1RPM_1e6
Romax-Sun_1RPM_1e7

Carrier precession

Y-Disp
X-Disp

Simpack_Carr_1RPM_1e6
Simpack_Carr_1RPM_1e7
Romax-Carr_1RPM_1e6
Romax-Carr_1RPM_1e7
Dynamic Precession Results

system rotation at 80 RPM

Sun precession

Carrier precession

Simpack_Sun_80RPM_1e7
Romax-Sun_80RPM_1e7
Dynamic Precession Results

System rotation at 80 RPM

Sun precession:
-2.00E-05, -1.50E-05, -1.00E-05, -5.00E-06, 0.00E+00, 5.00E-06, 1.00E-05, 1.50E-05

Carrier precession:
-1.50E-05, -1.00E-05, -5.00E-06, 0.00E+00, 5.00E-06, 1.00E-05, 1.50E-05
• Similar trends for planet load share are observed for Simpack bushing element and Romax non-linear bearings.

• However, non-linear models of bearings are necessary to accurately predict the precession behaviour of a planetary system in dynamic analysis as linear bushing model predicted increased precession.

• The whirl of the sun and carrier and hence the vibrations are sensitive to the planet pin stiffness. However this problem is reduced by flexible planet pin design that can absorb vibration.

• Nonetheless, MBS of complex systems, especially planetary systems, cannot give accurate results without sophisticated non-linear bearing models.
Romax Technology

UK Head Office
Rutherford House
Nottingham Science and Technology Park
Nottingham
Nottinghamshire
NG7 2PZ
United Kingdom

T: +44 (0)115 951 8800
F: +44 (0)115 951 8801
E: info@romaxtech.com

www.romaxtech.com